

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

2638

Mechanics 2

Wednesday

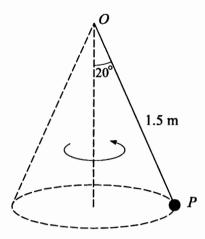
23 JUNE 2004

Afternoon

1 hour 20 minutes

Additional materials: Answer booklet Graph paper List of Formulae (MF8)

TIME


1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

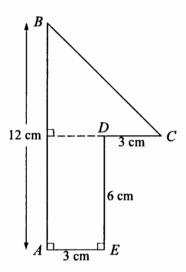
- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- Where a numerical value for the acceleration due to gravity is needed, use 9.8 m s⁻².
- You are permitted to use a graphic calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 60.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

A particle P, of mass 0.1 kg, is attached to one end of a light inextensible string of length 1.5 m. The other end of the string is attached to a fixed point O. The particle moves in a horizontal circle with constant angular speed ω rad s⁻¹, with the string taut and inclined at a constant angle of 20° to the vertical (see diagram).

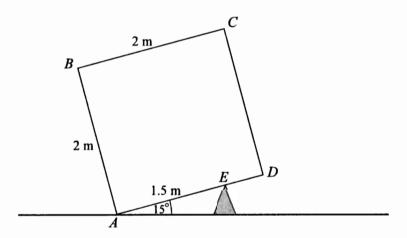
(i) Find the tension in the string.


[2]

(ii) Find ω .

[3]

A small sphere of mass 0.2 kg is dropped from rest at a height of 0.5 m above horizontal ground. It falls vertically, hits the ground and rebounds vertically upwards, coming to instantaneous rest at a height of 0.3 m above the ground. Calculate the magnitude of the impulse which the ground exerts on the sphere when it rebounds. Air resistance is ignored.


3

A uniform lamina ABCDE consists of a rectangle and a right-angled isosceles triangle, as shown in the diagram. AB = 12 cm, CD = 3 cm, DE = 6 cm and AE = 3 cm.

- (i) Show that the distance of the centre of mass of the lamina from the line AB is 1.75 cm. [3]
- (ii) Find the distance of the centre of mass of the lamina from the line AE. [3]
- (iii) The lamina is freely suspended from B. Calculate the angle that BA makes with the vertical. [2]

4

A uniform square board of mass 10 kg and side 2 m is modelled as a lamina ABCD. The board is in equilibrium in a vertical plane with the point A on rough horizontal ground. The edge AD rests on a fixed wedge whose point of contact, E, is smooth. The distance AE is 1.5 m and the edge AD makes an angle of 15° with the horizontal (see diagram).

Calculate

- (i) the magnitude of the force which the board exerts on the wedge at E, [4]
- (ii) the magnitude of the frictional force acting at A. [2]

A small object of mass $m \log B$ is now fixed to the board at B.

(iii) Assuming that the board does not slip, calculate the value of m for which the board is about to topple. [3]

5	Two particles of masses m kg and $2m$ kg are moving directly towards each other on a smooth horizontal
	plane, with speeds 2 m s ⁻¹ and 4 m s ⁻¹ respectively. When the particles collide, half of the total kinetic
	energy is lost. After the collision the particles move in the same direction as each other.

- (i) Find the speeds of the particles after the collision.
- (ii) Find the coefficient of restitution. [2]

[8]

- A car is moving along a straight horizontal road. The mass of the car is 1200 kg and the engine of the car is working at a constant rate of 50 kW. In a simple model the work done by the engine of the car is taken to be equal to the kinetic energy generated.
 - (i) Show that, in this model, the time taken to reach a speed of $30 \,\mathrm{m \, s^{-1}}$ from rest is $10.8 \,\mathrm{s}$.

The actual time to reach a speed of $30 \,\mathrm{m\,s^{-1}}$ from rest is 13.6 s, and in this time the car moves a distance of 280 m. In a more refined model there is assumed to be a constant air resistance.

(ii) Show that the magnitude of the air resistance is 500 N. [3]

On another occasion the car moves up a straight hill, inclined at 4° to the horizontal, with its engine again working at 50 kW. Starting from rest, the car takes 26.8 s to reach a speed of 30 m s⁻¹.

- (iii) Assuming that the air resistance remains 500 N, find the distance travelled in this time. [5]
- 7 The point O is 25 m above horizontal ground. A particle is projected from O with speed $40 \,\mathrm{m\,s^{-1}}$ at an angle of elevation of 35° above the horizontal, and it moves freely under gravity. The particle hits the ground at the point A.

Calculate

- (i) the greatest height above the ground reached by the particle, [3]
- (ii) the time taken for the particle to travel from O to A, [4]
- (iii) the speed and direction of motion of the particle immediately before it hits the ground at A. [6]

1	(i)	$T\cos 20^{\circ} = 0.1 \times 9.8$	M1		For resolving vertically	
		T = 1.04 N	A1	2		
	(ii)	$r = 1.5\sin 20^{\circ} (0.513 / 51.3cm)$	B1		or $\omega = \sqrt{(g/l\cos\theta)} M1$	
		Tsin $20^{\circ} = 0.1 \text{r}\omega^2$ (res horiz)	M1		$\omega = \sqrt{(9.8/1.5\cos 20^\circ)} \text{ A}1$	
		$\omega = 2.64$	A1	3		5

2	$v^2 = 2gh$	M1		Energy or kinematic equ.	
	$u = 3.13 \text{ m s}^{-1}, \sqrt{9.8}, \sqrt{g} \text{ aef}$	A1		Speed of impact	
	$v = 2.42$, $\sqrt{5.88}$, $\sqrt{0.6g}$ aef	A1		Speed of rebound	
	Impulse = $0.2(2.42+3.13)$	M1		±mass x sum of mag. of their vels.	
	1.11 Ns	A1	5	✓ above (must be positive)	5

3	(i)	Moments about axis AB	M1			
		$(18+18)\bar{x} = 18x1.5 + 18x2$	A1		Equal areas can be implied	
		$\bar{x} = 1.75$	A1	3	AG (answer must be validly obtained)	
	(ii)	Moments about AE or B	M1			
		$36 \overline{y} = 18x3 + 18x8$	A1		Or $36\bar{z} = 18x4 + 18 \times 9 \ (\bar{z} = 6.5)$	
		$\overline{y} = 5.5$	A1	3		
	(iii)	$\tan\theta = 1.75/6.5$	M1		must use 1.75 + their dist from B (\bar{z})	
		$\theta = 15.1^{\circ}$	A1√	2	✓ their \bar{z}	8

4	(i)	Dist. A to c.of m = $\frac{1}{2}\sqrt{8}$, $\sqrt{2}$ (1.41)	B1		1x10x9.8cos15°&1x10x9.8sin15°	
		$1.5R = 10x9.8x\frac{1}{2}\sqrt{8x\cos 60^{\circ}} M(A)$	M1		1.5R+1x10x9.8sin15°=	
		must recognise R is perp to AD n.b. (1-tan15°)cos15° = $\frac{1}{2}\sqrt{2}$	Al		1x10x9.8cos15°	
		R = 46.2 N	A1	4		
	(ii)	F = Rcos75°	M1		Resolving horizontally	
		F = 12.0	A15	2	√ their R	
	(iii)	Moments about A (with R=0 at E)	M1		$\bar{x} = 10/(10+m)\& \bar{y} = (10+2m)/(10+m)$	
		$m.9.8x2\cos75^{\circ}=10x9.8x\frac{1}{2}\sqrt{8}\cos60^{\circ}$	A1		and $tan15^{\circ} = \overline{x} / \overline{y}$ (M1 + A1)	
		m = 13.7	A1	3		9

5	(i)	$8m - 2m = \pm (mx + 2my)$	M1		C.of Mom. Must be $8m - 2m$	
		$\pm 6 = x + 2y$	A1		a.e.f.	
		$\frac{1}{2}mx^2 + \frac{1}{2}2my^2 = \frac{1}{2}(\frac{1}{2}m2^2 + \frac{1}{2}2m4^2)$	M1 A1		Loss of K.E. ($\frac{1}{2}$ (ke)must be on correct side for M1 (18 = $x^2 + 2y^2$)	
		$18 = (6-2y)^2 + 2y^2$	M1		Or $18=x^2+2(\frac{1}{2}(6-x))^2$ M0 for silly $\sqrt{}$	
		x=0 and/or $y=3$ registered	B1		Can simply disappear	
		x = 4	A1		S.R. B1 A0 for -4, -1	
		y = 1	A1	8		
	(ii)	$e = 3 \div 6$	M1		Correct use of $(x-y) \div (4+2)$	
		$e=\frac{1}{2}$	A1✓	2	\int their $(x-y) \div 6$. no for e>1 or e<0	10

6	(i)	$50\ 000t = \frac{1}{2}x1200x30^2$	M1		(540 000)	
		t = 10.8 s	A1	2	AG (answer must be validly obtained)	
	(ii)	W.D. = $\frac{1}{2}mv^2 + 280R$	M1		Or 50000/v - R=1200a or	
		$(680\ 000 = 540\ 000 + 280R)$			WD against resistance = Power x Δt	
		$50000x13.6 = \frac{1}{2}x1200x30^2 + 280R$	A1		50 000(13.6-10.8) = 280R	
		R = 500 N	Al	3	AG (answer must be validly obtained)	
	(iii)		B1		Or 50000/v -500 -1200gsin4° =1200a	
		1/2x1200x30 ² +1200x9.8xdsin4°	M1		Must have 4 terms	
		$= 50\ 000\ \text{x}\ 26.8 - 500d$	A1		n.b. next M1 depends on this M1	
		1320.3d = 800 000	M1		Attempt at solving energy equation	
		d = 606 m	A1	5		10

7	(i)	$0 = (40\sin 35^{\circ})^2 - 2x9.8xh$	M1		or via 2 kinematic equations ($t = 2.34$)	
		h = 26.9	A1			
		51.9 m (26.9+25)	A1√	3		
	(ii)	$-25 = 40\sin 35^{\circ}.t - 4.9t^{2}$	M1		Next M1 depends on this being a 3	
	P		A1		term quadratic	
		$4.9t^2 - 40\sin 35^{\circ}t - 25 = 0$	M1		a.e.f. and attempt to solve quadratic	-
		t = 5.59	A1	4		
	(iii)	$v = 40\sin 35^{\circ} - 9.8 \times 5.59$	M1		Use of $v^2=u^2+2as (2x9.8x51.9)$ (top)	
		v = (-) 31.9 their 5.59 (t ii)	A1√		✓ their 51.9 (i)	
		Speed= $\sqrt{(32.8^2+31.9^2)}$	M1		n.b. 40cos35° = 32.8	
		Speed = 45.7 m s^{-1}	Al√		↑ their 31.9 (vertical component)	
		$\theta = \tan^{-1}(31.9/32.8)$	M1		Must be right way up	
		$\theta = 44.2^{\circ}$ below horizontal	A1√	6	Or 45.8° to downward vertical	
		(above A1 / . √ their 31.9)			Direction can be clear from diagram	13
	(ii)	Alternative Q				
		O to Top $t = 2.34$	Bl		40sin35°÷9.8	
		Top to A $51.9 = 4.9t^2$	M1			
		t = 3.25	A1			
		Total $t = 5.59$	Al	(4)		
	(ii)	Alternative R				
		O to level $t = 4.68$	B1			
		Level to A	M1			
		$25 = 40\sin 35^{\circ}t + 4.9t^{2}$				
		t = 0.91	A1			
		Total $t = 5.59$	A1	(4)		
	(ii)	Alternative S			(ii) Alternative T	
	3-6	$-25 = x \tan 35^{\circ} - 9.8x^{2} / 2.40^{2} \cos^{2} 35$	M1		$v^2 = 2x9.8x51.9$	
		x = 183.4	A1		v = (-)31.9	
		$183.4 = 40\cos 35^{\circ} t$	Ml		$-31.9 = 40\sin 35^{\circ} - 9.8t$	
		t = 5.59	A1		t = 5.59	